CIRCULAR DESIGN FORUM

Circular, together!

CIRCULAR DESIGN FORUM

Hosted by Ronja Scholz, Iris Grobben, Pieter van Os

Life Cycle Design

Definition

Life-Cycle Design is the environmentally sound design of products based on the whole lifecycle starting from exploitation and processing of raw materials, preproduction, production, distribution, to use and returning materials back into the industrial cycles.

Life Cycle Design, blocks

Content of exploration

Current status in design practice

Framework to scope Life Cycle Design elements

Applying the framework for two sectors

Conclusions and subject for further debate

Life Cycle Design, blocks

Two subjects for this exploratory session How do designers (= you) apply Life Cycle Design in their daily practice?

Validation of integrale design model on Life Cycle / circular design?

Life Cycle Design

Content of exploration

Current status in design practice

Framework to scope Life Cycle Design elements

Applying the framework for two sectors

Conclusions and subject for further debate

Let's dive into LCD and have a quick brainstorm!

Pick a product (couch or consumer electronics) and discuss the following questions:

1. End-of-life: what is necessary to take it apart and reuse as much of the product as possible? What makes it easy / difficult?

Let's dive into LCD and have a quick, explorative brainstorm!

Pick a product (couch or consumer electronics) and discuss the following questions:

- 1. End-of-life: what is necessary to take it apart and reuse as much of the product as possible? What makes it easy / difficult?
- 2. Use-phase: what is it the user could do during the lifetime to keep the product in the use-phase as long as possible?

Let's dive into LCD and have a quick, explorative brainstorm!

Pick a product (couch or consumer electronics) and discuss the following questions:

- 1. End-of-life: what is necessary to take it apart and reuse as much of the product as possible? What makes it easy / difficult?
- 2. Use-phase: what is it the user could do during the lifetime to keep the product in the use-phase as long as possible?
- 3. Pre-use-phase (production): what design decisions are made that create these possibilities and difficulties?

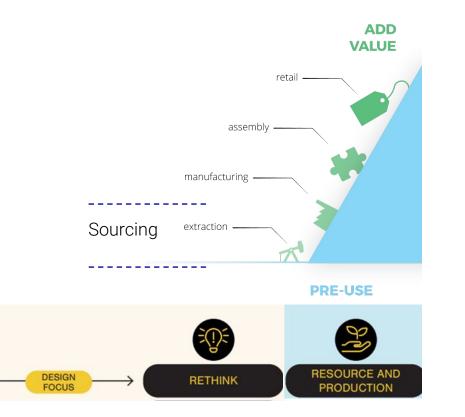
Life Cycle Design

Content of exploration

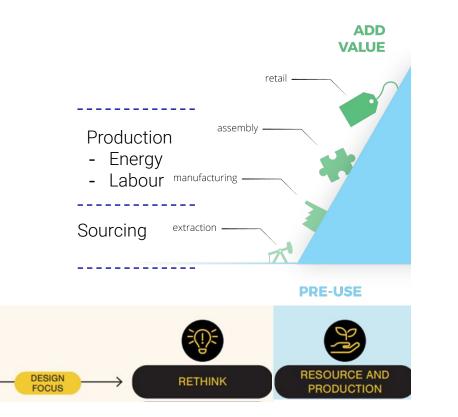
Current status in design practice

Framework to scope Life Cycle Design elements

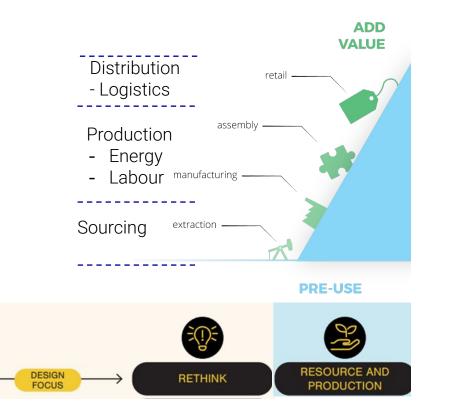
Applying the framework for two sectors


Conclusions and subject for further debate

Introduction framework


System level

- → Innovation for system level sustainability
- \rightarrow Several products consolidated
- \rightarrow Shared product use
- → Alternative product / packaging solution


Low-impact materials

- → Responsibly sourced
- \rightarrow Recycled
- \rightarrow Rapidly renewable
- \rightarrow Recyclable
- \rightarrow Save (no substances of concern)
- → Minimal amount of material
- \rightarrow Bio-materials (?)

Clean manufacturing

- \rightarrow Efficient and safe
- \rightarrow Less and renewable energy
- → Efficient software development

Efficient distribution and packaging

- \rightarrow Lightweighting
- → Energy efficient logistics
- → Reduced volume packaging
- → Less/cleaner/reusable packaging
- \rightarrow Recycled material

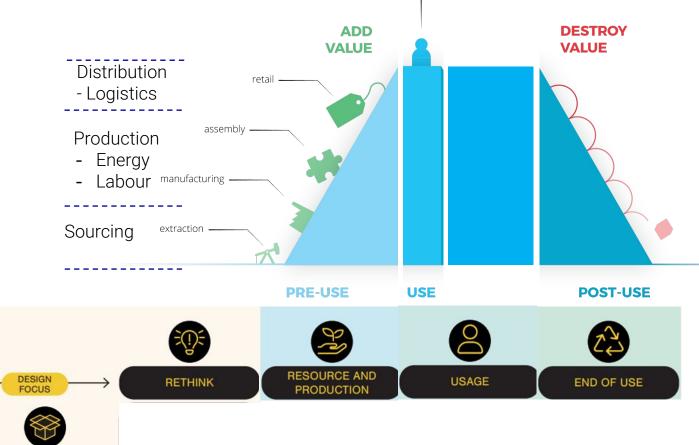
15

CIRCULAR DESIGN FORUM

Framework circular design, introduction ADD VALUE Distribution retail - Logistics assembly Production - Energy Labour manufacturing Sourcing extraction **PRE-USE** USE

Use efficiency

- \rightarrow Minimize power / fuel
- → Minimize indirect energy loss
- → Efficient/ clean use of consumables
- → Efficient/clean use of auxiliary materials


Extended use

- \rightarrow Reliability and durability
- → Upgradability and compatibility
- \rightarrow Ease of maintenance and repair
- \rightarrow Aging gracefully
- → Prevented premature obsolescence

MASTER CIRCULAR BUSINESS WITH THE VALUE HILL Elisa Achterberg (Circle Economy & Sustainable Finance Lab), Jeroen Hinfelaar (CIRCO), Nancy Brocken (TU Delft)

PRODUCT AND SERVICE

Framework circular design, introduction

Recovery for reuse

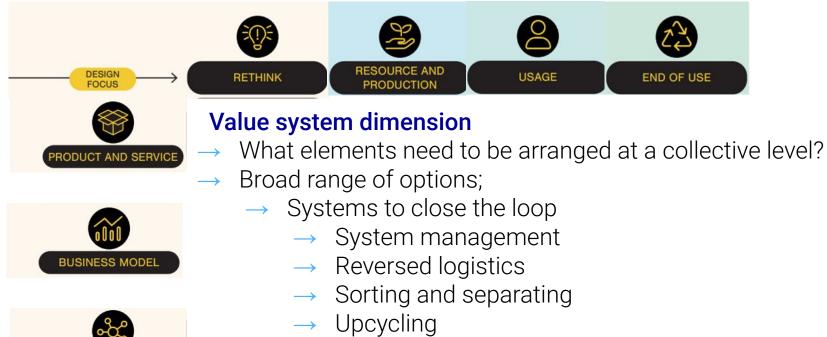
- \rightarrow Reuse direct of repurpose)
- → Refurbishment
- → Remanufacturing
- \rightarrow Part harvesting

End of life

- → Mechanical recycling
- \rightarrow Chemical recycling
- \rightarrow Composting
- \rightarrow Incineration (?)

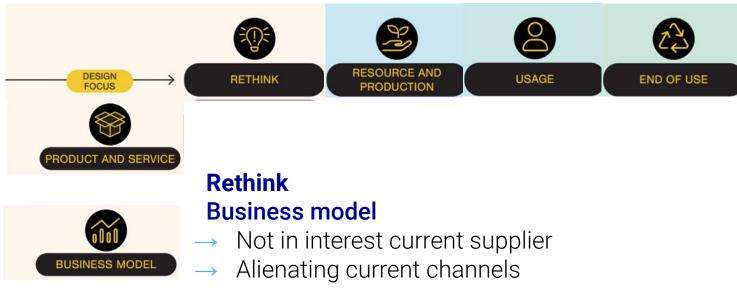
Business model dimension

- → Saving costs
- **%**


BUSINESS MODEL

VALUE SYSTEM

- → Capturing value
- → Keeping access to resources
 → Complying with regulation
- → Matching customer demand (tendering)
- → Responding to public pressure (e.g. packaging)
- → Should compensate for additional investment / effort / risk


VALUE SYSTEM

Value system dimension

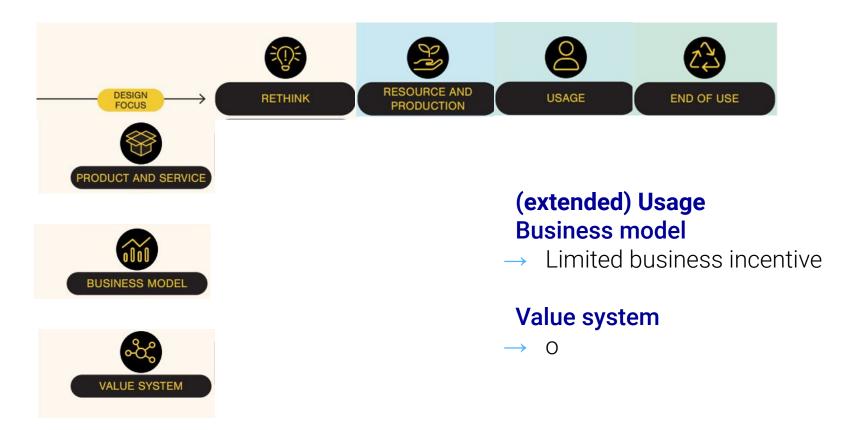
- \rightarrow Standards and quality controls
- → Capacity building
- \rightarrow Digitization
- → Collaboration / coordination needed beyond individual player

CIRCULAR DESIGN FORUM

Value system

- Symbiose with other industries
- → Additional capabilities

PRODUCT AND SERVICE



Sourcing and production Business model

- \rightarrow Price and quality of recycled material
- \rightarrow Disturbance of yield in production

Value system

- → Non-traceability of hazardous substances
- → Additional activities for reusable packaging

PRODUCT AND SERVICE

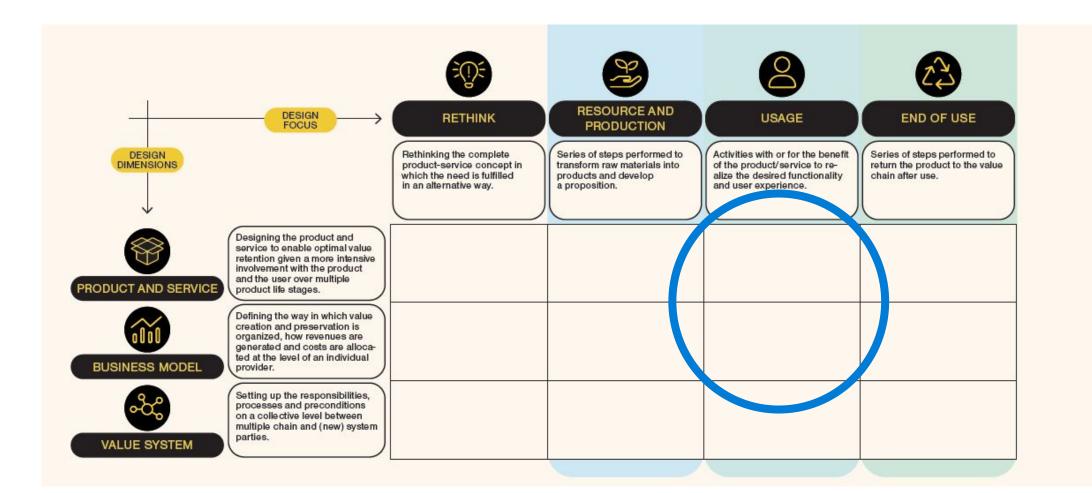
End-of-use Business model

- \rightarrow High cost of logistics and labour
- \rightarrow Low value of materials
- \rightarrow Allocation costs

Value system

 \rightarrow Efficient reversed loops

Interaction, round 1


Two topics for discussion

1. Additional design dimensions

Model is not only about product and service dimension, but also about business model and value system;

- → How do you currently deal with those dimensions?
- \rightarrow Is the product and service dimension covered like this?
- → Are the added dimensions (business model and value system) relevant?
- → Is it feasible and desired to add those dimensions?
- → Should all dimensions be part of the design process?
- → What are strengths and weaknesses of the method?

CIRCO practise (SME-companies)

Participant input, round 1

Two topics for discussion

2. Scoping for individual companies

In practice we observe that most designers select / pick certain cells of the model instead of fully a integral design;

- \rightarrow How does your company deal with this?
- → Is 'cherry picking' a sensible / pragmatic approach?
- \rightarrow How to select the relevant cells?
 - \rightarrow Hot spot identification / mapping
 - \rightarrow What role can LCA play?
- → How to address / deal with the cells not selected?

Life Cycle Design

Content of exploration

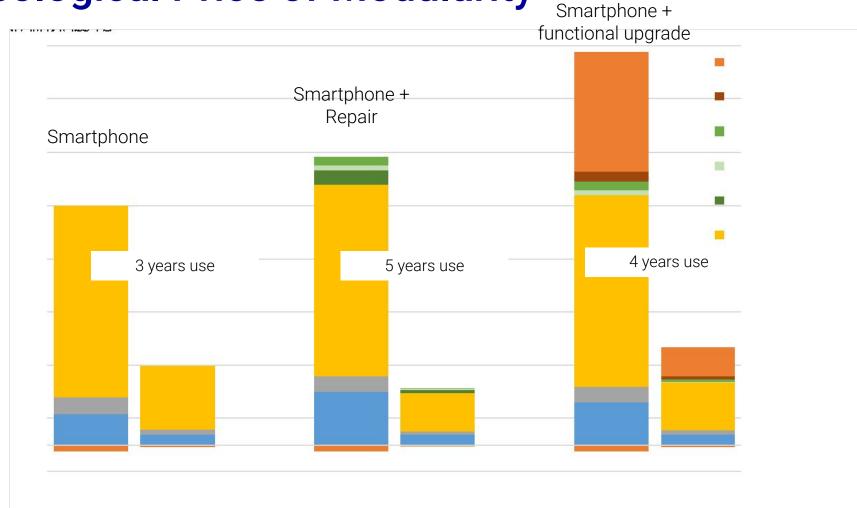
Current status in design practice

Framework to scope Life Cycle Design elements

Applying the framework for two sectors

Conclusions and subject for further debate

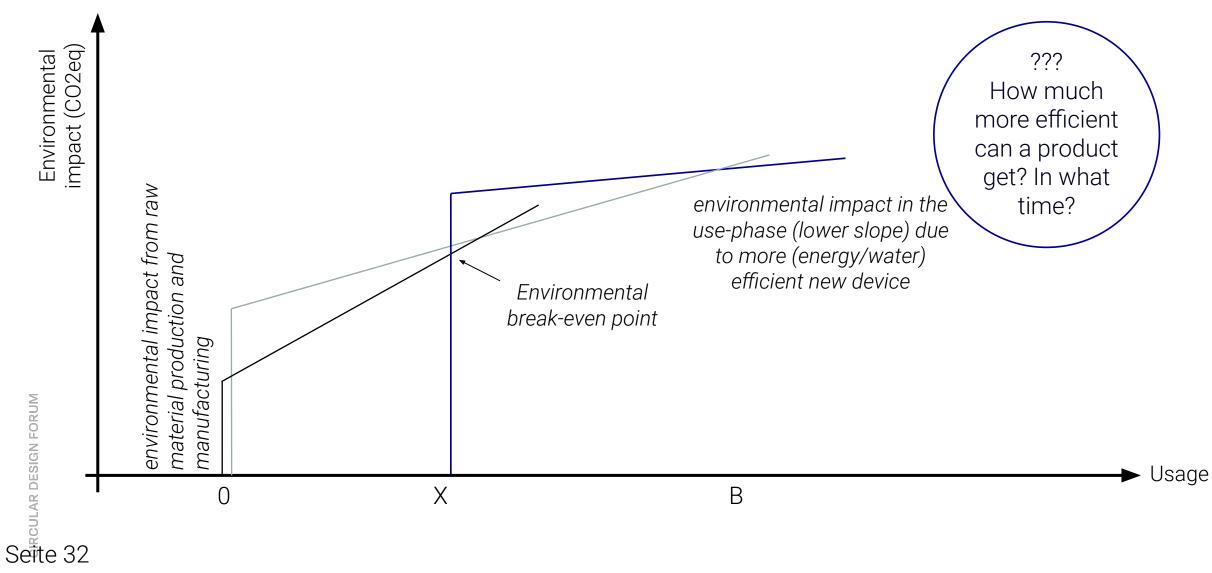
(Design) challenges in electronic products ightarrow Understanding eco-cost along the



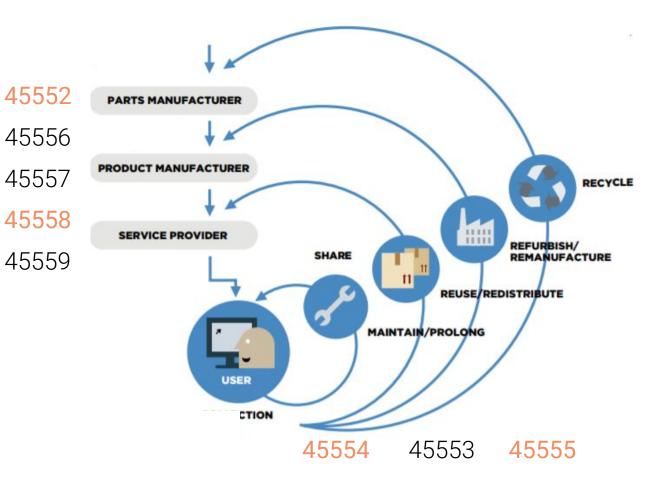
LCAs of white goods

		GWP (%)				
Product Group	Product Reference	Production	Use	Distrib.	EOL	Source
Vacuum Cleaner	Reference Canister VC	26%	77%	2%	-5%	Gallego-Schmid et al. 2016
	Reference Canister VC	18%	81%	0%	1%	Bobba et a. 2015
	Reference Canister VC	9%	88%	0%	3%	Blepp et al. 2013
	Reference Hand VC	8%	89%	0%	3%	
	Reference Battery VC	28%	62%	0%	9%	
	Reference Canister VC	28%	67%	10%	-4%	Ramens et al. 2019
	Reference Cordless VC	33%	63%	7%	-4%	
	Reference Robot VC	48%	47%	6%	-1%	
Washing Machines	Reference horizontal-axis WM	25%	79%	0%	-4%	Rüdenauer et al. 2005
	Reference horizontal-axis WM	42%	74%	2%	-18%	Yuan et al. 2016
Machines	Base Case WM	19%	81%	3%	-2%	Boyano et al. 2017
Dishwasher	Standard Dishwasher (A)	9%	91%	0%	0%	Gensch et al. 2013
Disnwasner	Standard Dishwasher (A+++))	13%	87%	0%	0%	
Fridge	Base Case household fridge	18%	82%	6%	-6%	VHK et al. 2016
Thuge	Base Case household fridge	12%	89%	0%	-2%	Rüdenauer et al. 2007
Kettle	Electric Kettle	7%	92%	1%	1%	Marcinkowski et al. 2017
Coffee Machine	Nespresso	40%	47%	8%	5%	Quantis 2013
	French Press	10%	88%	0%	2%	Brommer et al. 2011
	Filter drip coffee maker	14%	78%	0%	8%	
	Fully automatic coffee	6%	90%	0%	4%	
	Pad filter machine with credit	10%	86%	0%	4%	
	Capsule (PP+Alu) with credit	25%	64%	0%	12%	
	Capsule (100% Alu) with credit	25%	69%	0%	7%	

Source: Berwald et al. (2020) - Environmental evaluation of current and future design rules


The Ecological Price of Modularity

Proske et. Al. (2016) "Life Cycle Assessment of the Fairphone 2"


31

Impact of high material & low emission vs low material & higher emission – and technical advancement

targeting conflicts

Reference	Focus
CLC/TR 45550:2020	Definitions
EN 45552:2020	Durability (incl. reliability)
EN 45553:2020	Remanufacture
EN 45554:2020	Repair, reuse and upgrade
EN 45555:2019	Recyclability and recoverability
EN 45556:2019	Reused components
EN 45557:2020	Recycled material content
EN 45558:2019	Critical raw materials
EN 45559:2019	Methods for providing information

 \rightarrow Understanding LCAs

b2b Lighting

34

A question of interpretation

Unfortunately Data can't be shared

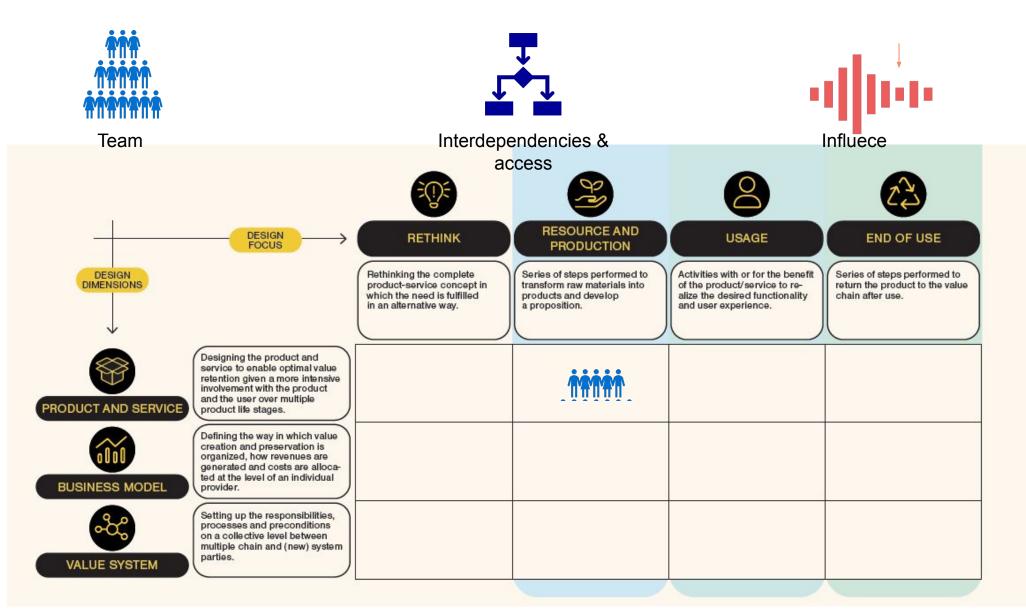
Global warming potential

Abiotic resource depletion potentials

With the **current design**(s) REPAIR does not make sense: - from an ecological pov (transport) - from an economic pov (time & effort) → Interpreting LCAs

A question of scope

MedTech Component


Unfortunately Data can't be shared

CIRCULAR DESIGN FORUM

The task force could only improve designs within given dimensions, changing dimension for better exploitation of space is not an option

35

➢ A question of scope & feasability

(Design) challenges in funiture

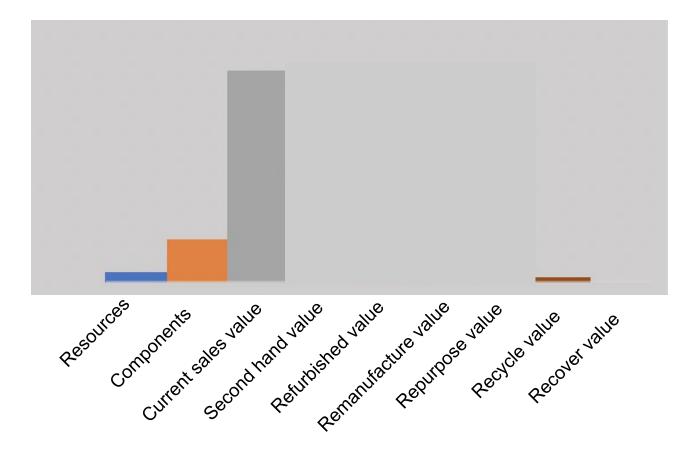
Business potential considerations for LCD

TNO Fingerprint method

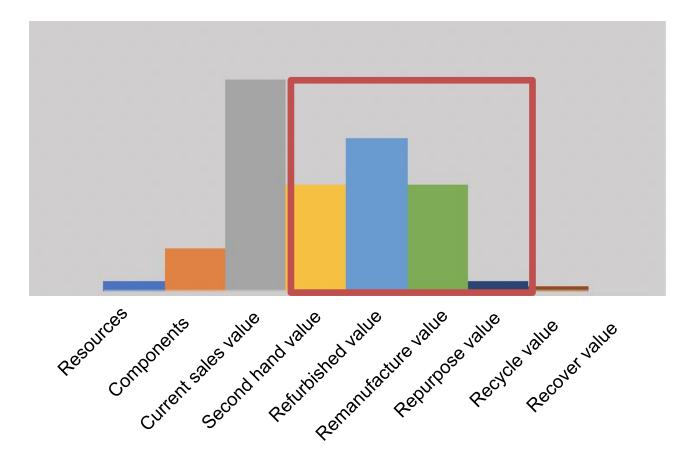
How is value created? How could it be preserved?

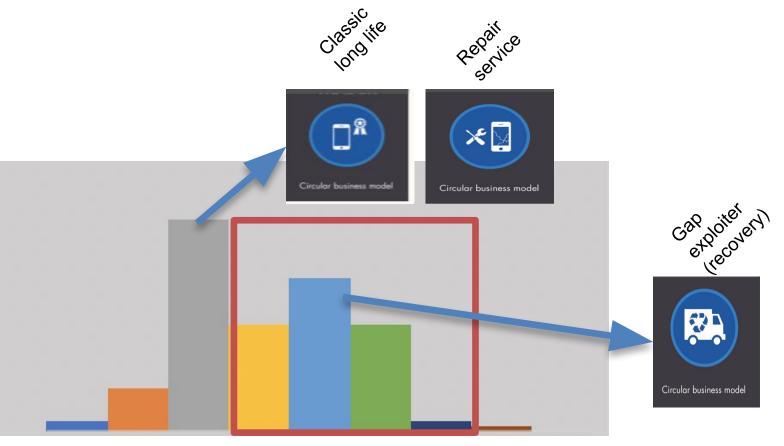
What 10 product properties play a role?

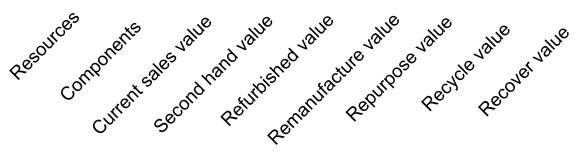
- Technical life
- Price per item
- Repairability
- Can the product use be planned
- Modularity
- Adaptivity
- Recyclability
- Frequency of use
- Labor intensity
- Sensitivity to fashion trends


Case of Landal | OT Design

- Sourcing and material assessment done in-house
- Short cycle, after 7 years end-of-life, sometimes earlier (technical life)
- Furniture that is used intensively (frequency of use)
- Fully glued and stapled (reparability)
- Repair expensive (labor intensive)




Business potential: value preservation



Business potential for multiple lifecycles

- Technical life
- Price per item
- Repairability
- Need to be planned
- Modularity
- Adaptivity
- Recyclability
- Frequency of use
- Labor intensity
- Sensitivity to fashion trends

Interaction, round 2

First topics for discussion

1. Business potential assessment

What would be the consequence when the business potential is also taken into consideration in project scoping

- → Are you already taking business potential into account?
- → Are the outcomes significantly different than without?
- \rightarrow Dilemma; how to you rate;
 - An intervention with a high environmental impact but limited probability of implementation because of a low business potential versus
 - A lower environmental impact with a high probability of implementation because of a high business potential

Sector challenges

Sector specific product and service challenges

Design elements	Electronics challenge	Furniture challenge
Recycled or biobased material	Global plastic value chain PCB are standardised	Local sourcing for wood Long chain for textiles
Efficient production	Yield driven industrial process	Local more flexible production
Environmental impact usage	Energy consumption	Cleaning hard to influence
Replacement triggers	New generation tech push	Need push from trends / fashion
	Defects	Defects
	Functioning within a system	Restyling of entire interior
First use extension options	No DIY repair, prof system needed	Limited DIY, Replacement of cover
	Software upgrades possible	Graceful aging / user attachment
	Technical obsolescence	
Product re-use	Limited demand, complex logistics	Broad variety of products
Product collection	Open loop system required	No specific system. Waste collection
	Systems differ per country	
End-of-use treatment	Shredding and material recover	No standard treatment, Incineration

45

Sector specific business model challenges

Design element

Electronics challenge

Furniture challenge

Cost savingFocus in industryEfficient productionLong optimized value chainCustomer relationRisk avoiding attitudeCustomer relationBrand basedAdding paid serviceVariety of marketsPowerful content industryPowerful content industryRepair optionsIncentive for prof systemSpare parts

Supplier specific Mostly in circle of influence Flexible Product based Less massive channels Closer to market Not used to services Service option

Possible but paradigm shift

'As a service' optionAggregator neededProduct re-use / component harvest Complex volume gameMaterial re-useClosed loop neededNot for individual supplier

 \rightarrow

Sector specific value system challenges

Design element	Electronics challenge	Furniture challenge
Design for recycling	Country specific recycling process	No process in place yet
Use of recycled materials	Predictable quantities Consistent quality	Textiles on national level Wood from multiple sources
Repair	No DIY, infra for repair and spare parts	·
End-of-use logistics	Open loop system Challenge for sorting Not designed for disassembly	Closed loop possible Size a limiting factor

Interaction, round 2

second topic for discussion

2. Sector characteristics

Based on provisional sketch of challenges for the two sectors;

- → First feedback on the design challenges as formulated per sector / your sector
- → On what level (sector, product category, product, component) should or could this input be defined?
- \rightarrow Is this sector input relevant and of added value for life cycle considerations?
 - E.g. how to deal with broad range of challenges on value system level?
- → Are there consequences of this differentiation regarding design process, -capabilities and -inputs

What more is to be discussed

Life Cycle Design

Content of exploration

Current status in design practice

Framework to scope Life Cycle Design elements

Applying the framework for two sectors

Conclusions and subject for further debate

Circular, together! CIRCWAR DESIGN FORUM